1. The pulse intensity from a laser is measured by a spectrometer (Fig. 1). You know that the form of the pulse intensity can closely be approximated by a Gaussian, such that: $I = \exp\left[-\frac{1}{2}\left(\frac{\nu-\nu_0}{\Delta\nu}\right)^2\right]$, where $\nu_0 = 2$ THz and $\Delta\nu$ is the standard deviation of the frequency. Your colleague gives you the e^{-1} points of the pulse (0.283 THz or $0.2\sqrt{2}$ THz), which is a measure of the frequency spread (but not $\Delta\nu$).

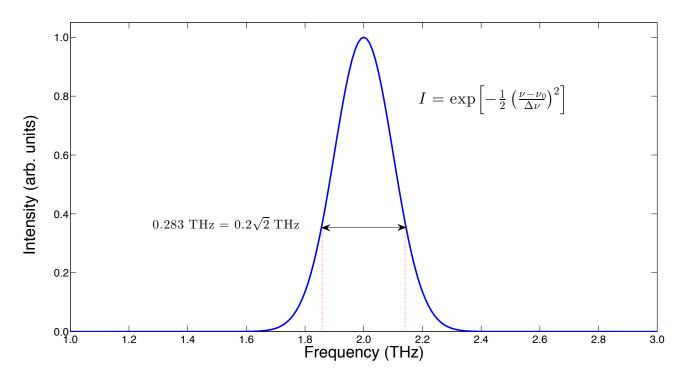


FIG. 1. Frequency components of the measured pulse intensity centered on 2.0 THz. The red dotted lines demarcate the e^{-1} points that your colleague measured for you.

(a.) Using the form of the Gaussian intensity and the fact that these points occur at e^{-1} , find $\Delta \nu$.

(b.) The Gaussian waveform is the pulse shape that obtains the minimum uncertainty in ΔE and Δt . Assuming this Gaussian pulse is Fourier-transform limited, use the energy-time uncertainty principle to find Δt .

(c.) A bandpass filter is placed in the beam line substantially reducing the spectral width $(\Delta \nu)$ of the pulse. Does your temporal width (Δt) increase or decrease?