PHYS 5130, Homework Set 1, due at 5 pm on Thursday, Feb. 11th.

1. To convert into momentum space, we can Fourier transform our 3D spatial wavefunction, $\psi(\mathbf{r})$ using:

$$\phi\left(\boldsymbol{p}\right) \equiv \frac{1}{\left(2\pi\hbar\right)^{3/2}} \int e^{-i(\boldsymbol{p}\cdot\boldsymbol{r})/\hbar} \psi\left(\boldsymbol{r}\right) d^{3}\boldsymbol{r}.$$

- (a). (20 points) Using spherical coordinates and setting the polar axis along \mathbf{p} , find $\phi(\mathbf{p})$ for the ground state of hydrogen. Do the θ integral first.
- (b). (10 points) Show that $\phi(\mathbf{p})$ is normalized. Sketch $\psi(\mathbf{r})$ versus \mathbf{r} and $\phi(\mathbf{p})$ versus \mathbf{p} .
- (c). (15 points) Calculate $\langle r^2 \rangle$ (in real space) and $\langle p^2 \rangle$ (in momentum space) for the ground state of hydrogen.
- (d). (10 points) What is the expectation value of the kinetic energy in the ground state? Express your answer as a multiple of E_1 (-13.6 eV; the Rydberg constant).
- 2. Examine Fig. 1. Light polarized at 45 degrees, such that

$$\vec{E} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$$

is incident on a vertically-oriented linear polarizer and a quarter waveplate with its fast axis 45 degrees to the linear polarizer.

- (a). (20 points) Write down the Jones vector representing the electric field at each of the numbered points in the diagram.
- (b). (15 points) The quarter waveplate in Fig. 1(a) is now replaced with a photoelastic modulator (PEM). The PEM provides a retardation as a function of time that varies between $\lambda/4$ and $-\lambda/4$. Sketch the intensity at (3) as a function of the PEM retardation modulation.
- 3. In class, we discussed how a static magnetic dipole moment, $\vec{\mu}_m(t) = \int_V \vec{r} \times \vec{J}_e(\vec{r},t) \, dV$, could be non-zero for a single quantum state. Here:

$$\vec{J}_{e}\left(\vec{r},t\right) = -\frac{Zei\hbar}{2m} \left(\Psi \nabla \Psi^{*} - \Psi^{*} \nabla \Psi\right),$$

FIG. 1. (A) Faraday isolator set up. (B) Retardation, as a function of time, of the photo-elastic modulator (PEM). The PEM replaces the quarter wave plate in (A).

is the current density for an electron.

- (a). (15 points) Find $\vec{\mu}_m(t)$ for Ψ_{211} of hydrogen.
- (b). (10 points) Use your value in (a) to find $\langle \vec{\mu}_m(t) \rangle$.
- (c). (20 points) Find $\vec{\mu}_m(t)$ for $\Psi = \frac{1}{\sqrt{5}} (\Psi_{210} + 2\Psi_{211})$ in hydrogen. This time-varying, or precessing, dipole moment can be probed using electron spin resonance.
- 4. (20 points) In the interaction picture (also known as the Dirac picture), we saw that: $|\Psi_I(t)\rangle = e^{iH_0t/\hbar}|\Psi_S(t)\rangle$ and $Q_I(t) = e^{iH_0t/\hbar}Q_Se^{-iH_0t/\hbar}$, where Q_S is an operator in the Schrödinger picture, Q_I in an operator in the interaction picture, and $H(t) = H_0 + H_I'$ is the time-dependent Hamiltonian. Using these definitions, show $H_I'|\Psi_I(t)\rangle = i\hbar \frac{d}{dt}|\Psi_I(t)\rangle$ and $\frac{dQ_I}{dt} = \frac{1}{i\hbar}[Q_I, H_0] + \frac{\partial Q_I}{\partial t}$. For one of these results, you will need to use the Schrödinger equation in ket form.