PHYS 5130, Homework Set 1, due at 5 pm on Thursday, Feb. $11^{\text {th }}$.

1. To convert into momentum space, we can Fourier transform our 3D spatial wavefunction, $\psi(\boldsymbol{r})$ using:

$$
\phi(\boldsymbol{p}) \equiv \frac{1}{(2 \pi \hbar)^{3 / 2}} \int e^{-i(\boldsymbol{p} \cdot \boldsymbol{r}) / \hbar} \psi(\boldsymbol{r}) d^{3} \boldsymbol{r}
$$

(a). (20 points) Using spherical coordinates and setting the polar axis along \mathbf{p}, find $\phi(\boldsymbol{p})$ for the ground state of hydrogen. Do the θ integral first.
(b). (10 points) Show that $\phi(\boldsymbol{p})$ is normalized. Sketch $\psi(\boldsymbol{r})$ versus \mathbf{r} and $\phi(\boldsymbol{p})$ versus \mathbf{p}.
(c). (15 points) Calculate $\left\langle r^{2}\right\rangle$ (in real space) and $\left\langle p^{2}\right\rangle$ (in momentum space) for the ground state of hydrogen.
(d). (10 points) What is the expectation value of the kinetic energy in the ground state? Express your answer as a multiple of $E_{1}(-13.6 \mathrm{eV}$; the Rydberg constant).
2. Examine Fig. 1. Light polarized at 45 degrees, such that

$$
\vec{E}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

is incident on a vertically-oriented linear polarizer and a quarter waveplate with its fast axis 45 degrees to the linear polarizer.
(a). (20 points) Write down the Jones vector representing the electric field at each of the numbered points in the diagram.
(b). (15 points) The quarter waveplate in Fig. 1(a) is now replaced with a photoelastic modulator (PEM). The PEM provides a retardation as a function of time that varies between $\lambda / 4$ and $-\lambda / 4$. Sketch the intensity at (3) as a function of the PEM retardation modulation.
3. In class, we discussed how a static magnetic dipole moment, $\vec{\mu}_{m}(t)=\int_{V} \vec{r} \times$ $\vec{J}_{e}(\vec{r}, t) d V$, could be non-zero for a single quantum state. Here:

$$
\vec{J}_{e}(\vec{r}, t)=-\frac{Z e i \hbar}{2 m}\left(\Psi \nabla \Psi^{*}-\Psi^{*} \nabla \Psi\right)
$$

FIG. 1. (A) Faraday isolator set up. (B) Retardation, as a function of time, of the photo-elastic modulator (PEM). The PEM replaces the quarter wave plate in (A).
is the current density for an electron.
(a). (15 points) Find $\vec{\mu}_{m}(t)$ for Ψ_{211} of hydrogen.
(b). (10 points) Use your value in (a) to find $\left\langle\vec{\mu}_{m}(t)\right\rangle$.
(c). (20 points) Find $\vec{\mu}_{m}(t)$ for $\Psi=\frac{1}{\sqrt{5}}\left(\Psi_{210}+2 \Psi_{211}\right)$ in hydrogen. This timevarying, or precessing, dipole moment can be probed using electron spin resonance.
4. (20 points) In the interaction picture (also known as the Dirac picture), we saw that: $\left|\Psi_{I}(t)\right\rangle=e^{i H_{0} t / \hbar}\left|\Psi_{S}(t)\right\rangle$ and $Q_{I}(t)=e^{i H_{0} t / \hbar} Q_{S} e^{-i H_{0} t / \hbar}$, where Q_{S} is an operator in the Schrödinger picture, Q_{I} in an operator in the interaction picture, and $H(t)=H_{0}+H_{I}^{\prime}$ is the time-dependent Hamiltonian. Using these definitions, show $H_{I}^{\prime}\left|\Psi_{I}(t)\right\rangle=i \hbar \frac{d}{d t}\left|\Psi_{I}(t)\right\rangle$ and $\frac{d Q_{I}}{d t}=\frac{1}{i \hbar}\left[Q_{I}, H_{0}\right]+\frac{\partial Q_{I}}{\partial t}$. For one of these results, you will need to use the Schrödinger equation in ket form.

