1. Momentum, \vec{p} , is a vector. Reconcile that notion with the de Broglie relationship which equates momentum to h/λ .

 $\frac{1}{2}$ is the magnitude of $\frac{1}{2}$. The direction of propagation defines the direction of $\frac{1}{2}$ ($\frac{1}{2}$), which is not explicitly captured in the numerical relation $p = \frac{1}{2}$.

2. In 1773, Benjamin Franklin investigated how oil could "calm" water near a pond in London. He found that a few cm³ of oil (use 3 cm³) could cover an area of 2000 m². Assuming that the oil on the surface of the water is one molecule thick, estimate the size of an oil molecule. As a historical aside, Franklin never did this calculation and thus never obtained an estimate for the linear dimension of a single molecule. However, similar methods were employed nearly a century later by Lord Kelvin and other scientists to obtain molecule size estimates (French and Taylor, 1978).

$$V = 3 \text{ cm}^{3}$$

$$= 3 \text{ cm}^{3} \times \left(\frac{10^{-2} \text{ m}}{1 \text{ cm}}\right)^{3}$$

$$= 3 \times 10^{-6} \text{ m}^{3}$$

$$A = 2 \times 10^3 \text{ m}^2$$

$$d = \frac{3}{2} 10^9 \text{ m} = 1.5 \text{ nm}$$

This estimate is quite low (especially for long chain oil molecules), but not unrecsonable.