PHYS 5130, Practice Final Exam

Potentially helpful constants and conversions: $h=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s} ; \hbar=1.055 \times 10^{-34} \mathrm{~J}$ $\mathrm{s} ; h \nu=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV}-\mathrm{nm}}{\lambda} ; \mu_{B}=9.274 \times 10^{-24} \mathrm{~J} / \mathrm{T} ; 1 \mathrm{eV}=1.603 \times 10^{-19} \mathrm{~J}$.

1. Pulse description and measurement with chirp.
(a) Sketch a down-chirped pulse (envelope and actual E-field).
(b) Assume a center frequency of ω_{0} and a chirp parameter a. If the pulse is moving through vacuum in the positive \hat{z} direction and is circularly polarized, what is the complete mathematical description of this pulse?
2. We have a gas laser ($\lambda=600 \mathrm{~nm}$) with bandwidth of 2 nm that we are trying to spectrally resolved using a CCD camera with $20 \mu \mathrm{~m}$ pixels situated 150 mm away from our 1000 grooves $/ \mathrm{mm}$ grating. The grating equation for first-order dispersion is: $\lambda=d\left[\sin \left(\theta_{i}\right)+\sin \left(\theta_{r}\right)\right]$, where d is the groove spacing (in units of distance), θ_{i} is the input angle from normal of the light (30° for this situation), and θ_{r} is the reflection angle from normal incidence. How many pixels does this bandwidth cover? (Hint: calculate $\theta_{r}(601 \mathrm{~nm})$ and $\theta_{r}(599 \mathrm{~nm})$ first, then find the positions of these spatially dispersed wavelengths on the CCD.)
3. Describe in words and pictures what carrier-envelope phase (sometimes called carrier-envelope offset) is. Why might spectroscopists want to have carrier-envelopephase stabilized systems?
4. We are designing a THz detection system using $\langle 100\rangle$-cut ZnTe . We anticipate the center THz frequency to be at 1.5 THz , which we will measure with a 800 nm NIR beam with a spectral bandwidth of 20 nm (over which the index of refraction changes from 1.4975 to 1.5025). If $n_{\mathrm{THz}}=1.5$, how long should we make our crystal?
5. Circularly-polarized light.
(a) Write down the density matrix for an arbitrary polarized beam (i.e., one with a phase ϕ, where $\phi=-\pi / 2$ describes right-circularly polarized light and $\phi=\pi / 2$ describes left-circularly polarized light).
(b) Obtain the eigenvalues and eigenvectors for this density matrix with $\phi=\pi / 2$.

Describe the physical significance of these quantities.

