PHYS 4310, Final Exam December 14, 2015

1. An electron is in the spin state:

$$\chi = A \begin{bmatrix} 3i \\ -2 \end{bmatrix}. \tag{1}$$

- (a). Find A.
- (b). Find $\langle S_i \rangle$ for i = x, y, z.
- (c). What are the "uncertainties" in S_x , S_y , and S_z ? Here, "uncertainty" is taken in the same sense as other observables that we have covered. Check to see if these uncertainties, σ_{S_i} , satisfy $\sigma_{S_i}\sigma_{S_j} \leq \frac{\hbar}{2}|\langle S_k \rangle|$.

2. An electron in hydrogen is in the following position and spin state:

$$\Psi(\mathbf{r},s) = R_{21} \left(\sqrt{\frac{1}{3}} Y_1^0 \chi_+ + \sqrt{\frac{2}{3}} Y_1^1 \chi_- \right), \tag{2}$$

- where R_{21} and $Y_1^{0,1}$ are defined in the usual way for the hydrogen atom. (a). You make a measurement of L^2 on this electron. What values might you get and what are the probabilities of each?
- (b). You make a measurement of L_z on this electron. What values might you get and what are the probabilities of each?
- (c). Same question as (a), except for S^2 .
- (d). Same questions as (b), except for S_z .
- (e). What is the probability density? Hint: $R_{21} = \sqrt{\frac{1}{24}} a_0^{-3/2} \frac{r}{a_0} \exp\left(-\frac{r}{a_0}\right), Y_1^0 =$ $\sqrt{\frac{3}{4\pi}}\cos\theta, Y_1^1 = -\sqrt{\frac{3}{8\pi}}\sin\theta e^{i\phi}.$ (f). Find $\langle r \rangle$.

3. A particle in a harmonic oscillator potential starts out in the following state:

$$\Psi(x,0) = A \left[2\psi_0(x,0) + 3\psi_1(x,0) \right], \tag{3}$$

where ψ_i is the i^{th} harmonic oscillator eigenstate.

- (a). Find A.
- (b). What is $\Psi(x,t)$ and $|\Psi(x,t)|^2$? (c). Find $\langle x \rangle$, $\langle x^2 \rangle$, $\langle p \rangle$, and $\langle p^2 \rangle$.
- (d). Check the position-momentum uncertainty relation.

4. The electric dipole operator, $\hat{\mu} = q\hat{\mathbf{r}} = q\hat{x}$ (for 1D), couples transitions from ψ_i to ψ_f if the integral $\int_{-\infty}^{\infty} \psi_i^* \hat{\mu} \psi_f$ is non-zero (here, q is the charge). Put slightly differently, if $\psi_i^* \hat{\mu} \psi_f$ is anti-symmetric, then the transition **cannot** occur (*i.e.*, it is forbidden). Between the four main orbital angular momentum states, s (l=0), p (l=1), d (l=2), and f (l=3), which transitions are **dipole allowed**?

5. The energy splitting of orbital levels for ψ_{nlm} goes as $\Delta E = m\mu_B B$, where μ_B is the Bohr magneton (\sim 57.88 μ eV/T for an electron). Ignoring spin, draw the orbital splitting with and without a magnetic field, B, for the s, p, and d orbital states.

- 6. In class, we saw that two eigenstates (wavefunctions) are orthogonal when $\int \psi_a^* \psi_b = 0$.
- (a). Beyond this formula, what does it mathematically mean when we say that two eigenstates (wavefunctions) are orthogonal?
- (b). What does it physically mean when we say that two eigenstates (wavefunctions) are orthogonal?

- 7. A wavefunction, $\psi(x,0)$, in the infinite square well, of length L, is prepared such that $\psi(x,0) = \frac{1}{\sqrt{2}} [\psi_1 i\psi_3]$, where ψ_i is the i^{th} infinite square well wavefunction.
- (a). Using the explicit form of ψ_i , find $\langle p^2 \rangle$.
- (b). What happens to $\langle p^2 \rangle$ if L is tripled and m is halved? What about E_n , where E_n is the energy eigenvalue of the n^{th} level?

8. At what length scales is it applicable to use quantum mechanics? When do we move into the so-called classical regime?