PHYS 5130, Homework Set 3, due at 5 pm on Thursday, March 24th.

- 1. A HeNe laser is 15 cm long (L=d for this case). The absorption coefficient at the main lasing transition is 10^{-13} cm². We estimate losses in the entire system to be 10%.
- (a). (10 points) What is ΔN , where $\Delta N > N_{\text{threshold}}$ is the population inversion?
- (b). (10 points) If the neon gas pressure is 0.3 mbar and the gas temperature is 25° C, what fraction of the total *density* of neon atoms in the laser is ΔN ?
- 2. (15 points) Calculate the gain constant of a hypothetical laser have the following parameters: $N_2 N_1 = 10^{18}$ cm⁻³, wavelength = 800 nm, linewidth = 1 nm, spontaneous emission lifetime = 10^{-4} seconds. Remember that you need to use the relation for A_{21} (spontaneous emission rate; in s⁻¹) to B_{21} .
- 3. Schawlow-Townes Formula:
- (a). (10 points) What is the Schawlow-Townes limit to the laser frequency width for a HeNe laser operating at 632.8 nm with an output power of 1 mW and a cavity mode width of 4.7×10^5 Hz?
- (b). (10 points) What is the Schawlow-Townes limit to the laser frequency width for a semiconductor laser operating at 850 nm with an output power of 3 mW, cavity length of 300 μ m, index of refraction of 3.5, and a front and back facet reflectivity of 0.3?
- 4. (15 points) Estimate the frequency drift of a laser oscillating at $\lambda = 500$ nm due to thermal expansion of the resonator for a temperature drift of 1°C when the resonator mirrors are mounted on supports made of (a) invar ($\alpha = 1.2 \times 10^{-6} \text{ K}^{-1}$) and (b) fused quartz ($\alpha = 4 \times 10^{-7} \text{ K}^{-1}$).
- 5. A laser medium has a Doppler-broadened gain profile HWHM of 2 GHz (= $\delta\nu$) and a central wavelength of 633 nm (main lasing transition of a HeNe laser). The homogenous width is 50 MHz (= $\Delta\nu$), and the transition probability A_{ik} is 1×10^8 s⁻¹. Assume that one of the resonator modes (L=40 cm) is exactly at the

center frequency, ν_0 , of the gain profile. Resonator losses are 10%. We want to find (1) the threshold inversion for the central mode and (2) at what level of population inversion does oscillation start on the two adjacent longitudinal modes.

- (a). (5 points) What is the spacing (in MHz) of the longitudinal modes?
- (b). (10 points) Using the gain curve, what is the relation between N_0 and N_1 , where N_0 is the population at ν_0 and N_1 is the population of the adjacent mode?
- (c). (10 points) Find $\Delta N_{threshold}$ (answer to part 2).
- (d). (5 points) Once a mode surpasses $\Delta N_{threshold}$, oscillation begins. Using your answers in (b) and (c), when $\Delta N_1 = N_{threshold}$, what is ΔN_0 , where ΔN_i is the population inversion at N_i (answer to part 1 when adjacent modes are in oscillation)?