PHYS 4310, Homework 6 due on **Monday** October 19th, 2015

Griffiths 8.2 (18 points), 8.7 (15 points), 8.11 (20 points)

- 4. (8 points) Proton and deuteron (one proton and one neutron, but no electrons) beams, each with a kinetic energy of 4 MeV are incident on a barrier that is 10^{-12} cm thick and 10 MeV high. What is the transmission coefficient of each beam? Partial answer: $T_{\text{deuteron}} = 1.0 \times 10^{-6}$.
- 5. (15 points) A ball of mass, m=0.1 kg, is bounced off a floor such that its potential energy, V(x), can be defined as: V(x)=mgh for x>0 and ∞ for $x\leq 0$, where g=9.8 m/s² is the acceleration from gravity and h is the height in meters.
- (a). Solve the Schrödinger equation (i.e., find ψ) for this potential in terms of the Airy function, $Ai(\alpha x)$. The $Bi(\alpha x)$ term blows up for large x rendering ψ non-normalizable. There is no need to normalize ψ . $Ans: \psi(x) = aAi\left[\alpha\left(x \frac{E}{mg}\right)\right]$.
- (b). Find the first three allowed energies in joules. Hint: If $V(x \le 0) = \infty$, then what is $\psi(0)$? The zero solutions of Ai(z) = 0 are $a_1 = -2.34$, $a_2 = -4.09$, and $a_3 = -5.52$. Partial answer: $E_1 = 8.81 \times 10^{-23}$ J.
- (c). Using the form of E_n we found in part (b), what is the ground state energy (E_1) in eV of an electron $(m_e = 9.11 \times 10^{-31} \text{ kg})$? What is $\langle x \rangle$? To find $\langle x \rangle$, you will need to employ the virial theorem: $2\langle T \rangle = \langle x \frac{dV}{dx} \rangle$, where $\langle H \rangle = \langle T \rangle + \langle V \rangle = E_n$.
- 6. (12 points) (1) For what range of ν is the function $f(x) = x^{\nu}$ in Hilbert space, on the interval (0,1)? Assume ν is real (can be positive or negative).
- (2) For $\nu = 1/2$, is f(x) in this Hilbert space? What about xf(x) and $\left(\frac{d}{dx}f(x)\right)$?

Helpful tips for 8.11: Use Eqn. 8.51 to set up your problem, defining your well from 0 to x_2 , where x_2 is the intersection of E and the potential (i.e., what is E in terms of α , x_2 , and ν ?). Define z as $\frac{\alpha}{E}x^{\nu}$ to simplify the integral. $\int_0^1 z^{1/\nu-1} \sqrt{1-z} dz = \frac{\Gamma(1/\nu)\Gamma(3/2)}{\Gamma(1/\nu+3/2)}.$ From here, you need to play with the Γ function to obtain the answer given in the problem (Eq. 8.53). For $\nu = 2$, E_n reduces to $(n-\frac{1}{2}) \hbar \sqrt{\frac{2\alpha}{m}}$. For the harmonic oscillator, what is α ? Substitute in this expression for α into E_n . How does this compare to the harmonic oscillator?